Основы работы газоразрядных электровакуумных приборов. Устройство и принцип действия электровакуумных приборов. Типы электронных ламп и области их применения. Газоразрядные диоды и газонаполненные лампы

08.10.2023

Своим появлением современные электровакуумные приборы обязаны американскому изобретателю Томасу Эдисону. Именно он разработал первый удачный способ освещения, используя для этого электрическую лампочку.

История создания лампы

В настоящее время с трудом верится, что электричество существовало далеко не во все исторические периоды. Первые лампочки накаливания появились только в конце девятнадцатого века. Эдисону удалось разработать модель лампочки, в которой располагались угольные, платиновые, бамбуковые нити. Именно этого ученого по праву называют «отцом» современной Им была упрощена схема лампочки, существенно снижена стоимость продукции. В результате на улицах появилось не газовое, а электрическое освещение, а новые осветительные приборы стали именовать лампами Эдисона. Томас на протяжении длительного времени работал над усовершенствованием своего изобретения, в итоге применение свечей стало нерентабельным мероприятием.

Принцип работы

Какое устройство имеют лампочки накаливания Эдисона? В каждом приборе есть тело накала, стеклянная колба, основной контакт, электроды, цоколь. У каждого из них есть свое функциональное предназначение.

Суть работы данного устройства заключается в следующем. При сильном нагревании тела накала потоком заряженных частиц, происходит превращение электрической энергии в световой вид.

Для того чтобы излучение мог воспринимать человеческий глаз, необходимо достичь температуры не меньше 580 градусов.

Среди металлов максимальной температурой плавления обладает вольфрам, поэтому именно из него изготавливается тело накала. Для уменьшения объема проволоку стали располагать в виде спирали.

Несмотря на высокую химическую стойкость вольфрама, для его максимальной защиты от процесса коррозии тело накала размещается в герметичном стеклянном сосуде, из которого предварительно выкачан воздух. Вместо него в колбу закачивается инертный газ, который не дает вольфрамовой проволоке вступать в реакции окисления. Чаще всего в качестве инертного газа применяется аргон, иногда используют азот или криптон.

Суть изобретения Эдисона в том, что испарению, происходящему при длительном нагревании металла, препятствует давление, создаваемое инертным газом.

Особенности лампы

Существует довольно много разных ламп, предназначенных для освещения большой площади. Особенность изобретения Эдисона в возможности корректировать мощность данного прибора с учетом освещаемой площади.

Производители предлагают разные виды ламп, отличающихся по сроку службы, размерам, мощности. Остановимся на некоторых видах этих электрических приборов.

Самые распространенные вакуумные лампы - ЛОН. Они в полной мере соответствуют гигиеническим требованиям, а средний срок их службы составляет 1000 часов.

Среди недостатков ламп общего назначения выделим низкий Примерно 5 процентов электрической энергии переходит в световую, остальные выделяются в виде тепла.

Прожекторные лампы

Они имеют достаточно высокую мощность, предназначены для освещения больших площадей. Электровакуумные приборы подразделяют на три группы:

  • кинопроекционные;
  • маячные;
  • общего назначения.

Прожекторный световой источник отличается длиной тела накала, у него более компактные размеры, что позволяет усиливать габаритную яркость, улучшать фокусировку потока света.

Зеркальные электровакуумные приборы имеют светоотражающий алюминиевый слой, иную конструкцию колбы.

Та ее часть, которая предназначена для проведения света, изготовлена из матового стекла. Это позволяет делать свет мягким, снижать контрастные тени от различных предметов. Такие электровакуумные приборы применяют для интерьерного освещения.

Внутри галогенной колбы находятся соединений брома либо йода. Благодаря их способности выдерживать температуры до 3000 К, эксплуатационный срок ламп составляет около 2000 часов. Но и в этом источнике существуют свои недостатки, например, галогенная лампа, имеет невысокое электрическое сопротивление при остывании.

Основные параметры

В лампе накаливания Эдисона вольфрамовая нить располагается в разной форме. Для стабильной работы такого прибора необходимо напряжение 220 В. В среднем срок ее эксплуатации составляет от 3000 до 3500 часов. Учитывая, что цветовая температура 2700 К, лампа обеспечивает белый теплый либо желтый спектр. В настоящее время предлагаются лампы с разными размерами Е27). При желании можно подобрать в потолочную люстру либо настенный осветительный прибор лампу в виде шпильки, елочки, спирали.

Изобретение Эдисона поделено по числу вольфрамовых нитей на отдельные классы. От этого показателя напрямую зависит стоимость осветительного прибора, его мощность, эксплуатационный срок.

Принцип работы ЭВЛ

Термоэлектронная эмиссия заключается в испускании нагретым телом накала электронов в вакуум или инертную среду, создаваемую внутри колбы. Для управления потоком электронов используется магнитное либо электрическое поле.

Термоэлектронная эмиссия позволяет практически использовать положительные качества электронного потока - генерировать, усиливать электрические колебания различной частоты.

Особенности радиоламп

Электровакуумный диод - основа радиотехники. В конструкции лампы есть два электрода (катод и анод), сетка. Катод обеспечивает эмиссию, для этого слой вольфрама покрывается барием или торием. Анод выполняется в виде пластины из никеля, молибдена, графита. Сетка является разделителем между электродами. При нагревании рабочего тела из движущихся частиц создается мощный электрический ток в вакууме. Электровакуумные приборы данного вида составляют основу радиотехники. Во второй половине прошлого века электровакуумные лампы использовались в разнообразных сферах технической, радиоэлектронной промышленности.

Без них невозможно было изготовить радиоприемники, телевизоры, специальное оборудование, вычислительные машины.

Сферы применения

По мере развития точного приборостроения, радиоэлектроники, эти лампы потеряли свою актуальность, перестали применяться в больших масштабах.

Но и в настоящее время есть такие промышленные направления, в которых требуются ЭВЛ, ведь только вакуумная лампа способна обеспечить работоспособность приборов по заданным параметрам, в определенной среде.

Особый интерес ЭВЛ представляют для военно-промышленного комплекса, поскольку именно вакуумные лампы отличаются повышенной стойкостью к электромагнитным импульсам.

В одном военном аппарате может содержаться до сотни ЭВЛ. Большая часть полупроводниковых материалов, РЭК не может функционировать при повышенной радиации, а также в условиях естественного вакуума (в космосе).

ЭВЛ способствуют повышению надежности и долговечности спутников и космических ракет.

Заключение

В электровакуумных приборах, которые позволяют генерировать, усиливать, преобразовывать электромагнитную энергию, рабочее пространство полностью освобождено от воздуха, отгорожено от атмосферы непроницаемой оболочкой.

Открытие термоэлектронной эмиссии способствовало созданию простой двухэлектродной лампы, названной вакуумным диодом.

При его включении в электрическую цепь внутри прибора появляется ток. При изменении полярности напряжения он исчезает, причем независимо от того, насколько нагревается катод. При поддержании постоянного значения температуры нагретого катода удалось установить прямую зависимость между анодным напряжением и силой тока. Полученные результаты стали применяться при разработке электронных вакуумных приборов.

Например, триод представляет собой электронную лампу, имеющую три электрода: анод, термоэлектронный катод, управляющую сетку.

Именно триоды стали первыми устройствами, применяемыми для усиления электрических сигналов в начале прошлого века. В настоящее время на смену триодам пришли полупроводниковые транзисторы. Вакуумные триоды применяются только в тех областях, где необходимо преобразование мощных сигналов при незначительном количестве активных компонентов, а массой и габаритами можно пренебречь.

Мощные радиолампы сравнимы с транзисторами по коэффициенту полезного действия, надежности, но срок их службы значительно меньше. У маломощных триодов большая часть накала уходит на потребляемую каскадную мощность, иногда ее величина доходит до 50%.

Тетроды представляют собой электронную двухсеточную лампу, которая предназначается для увеличения мощности и напряжения электрических сигналов. Эти устройства имеют больший коэффициент усиления в сравнении с триодом. Подобные конструкционные особенности позволяют применять тетроды для усиления низких частот в телевизорах, приемниках, иной радиоаппаратуре.

Потребители активно используют лампы накаливания, в которых телом накала является вольфрамовая спираль или проволока. Эти приборы имеют мощность от 25 до 100 Вт, их эксплуатационный срок составляет 2500-3000 часов. Производители предлагают лампы с разным цоколем, формой, размерами, поэтому можно подобрать вариант лампы с учетом особенностей осветительного прибора, площади комнаты.

Электровакуумный прибор - устройство, предназначенное для генерации, усиления и преобразования электромагнитной энергии, в котором рабочее пространство освобождено от воздуха и защищено от окружающей атмосферы непроницаемой оболочкой.

К таким приборам относят как вакуумные электронные приборы, в которых поток электронов проходит в вакууме, так и газоразрядные электронные приборы, в которых поток электронов проходит в газе. Так же к электровакуумным приборам относятся и лампы накаливания.

В электровакуумных приборахпроводимость осуществляется посредством электронов или ионов, движущихся между электродами через вакуум или газ.

Начало было положено открытием термоэлектронов. В 1884 г. известный американский изобретатель Томас Альва Эдисон в поисках рациональной конструкции лампы накаливания обнаружил эффект, названный его именем. Вот его первое описание: «Между ветвями нити» лампочки накаливания, на одинаковом расстоянии от обеих, помещена платиновая пластинка, представляющая собой изолированный электрод... Если включить между этим электродом и одним из концов нити гальванометр, то при горении лампы наблюдается ток, который меняет свое направление, смотря по тому, присоединен ли к инструменту положительный или отрицательный конец угольной нити. Кроме того, его интенсивность возрастает вместе с силой тока, проходящего через нить».
Далее следует объяснение: «по-видимому, в этой лампе частицы воздуха (или угля) разлетаются от нити по прямым линиям, уносят электрический заряд».
Эдисон - изобретатель, он не занимается анализом явления. Цитированными фразами, по существу, ограничивается содержание заметки. Это не больше как заявка на приоритет. Попытки Эдисона найти практическое применение эффекта успеха не имели.

Таким образом было открыто явление термоэлектронной эмиссии и создана первая радиолампа–электровакуумный диод.

Термоэлектро́нная эми́ссия (эффект Ричардсона , эффект Эдисона ) - явление испускания электронов нагретыми телами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет, и явление термоэлектронной эмиссии становится заметным.

Исследование закономерностей термоэлектронной эмиссии можно провести с помощью простейшей двухэлектродной лампы - вакуумного диода, представляющего собой откачанный баллон, содержащий два электрода: катод К и анод А.


Рис.3.1 Конструкция вакуумного диода

В простейшем случае катодом служит нить из тугоплавкого металла (например, вольфрама), накаливаемая электрическим током. Анод чаще всего имеет форму металлического цилиндра, окружающего катод. Обозначение диода в схемах электрических принципиальных показано на рисунке 3.2.

Рис. 3.2. Обозначение вакуумного диода в схемах электрических принципиальных.

Если диод включить в цепь, то при накаливании катода и подаче на анод положительного напряжения (относительно катода) в анодной цепи диода возникает ток. Если поменять полярность напряжения, то ток прекращается, как бы сильно катод ни накаливали. Следовательно, катод испускает отрицательные частицы - электроны.

Если поддерживать температуру накаленного катода постоянной и снять зависимость анодного тока от анодного напряжения - вольт-амперную характеристику, то оказывается, что она не является линейной, то есть для вакуумного диода закон Ома не выполняется. Зависимость термоэлектронного тока от анодного напряжения в области малых положительных значений описывается законом трех вторых

где В - коэффициент, зависящий от формы и размеров электродов, а также их взаимного расположения.

При увеличении анодного напряжения ток возрастает до некоторого максимального значения, называемого током насыщения. Это означает, что почти все электроны, покидающие катод, достигают анода, поэтому дальнейшее увеличение напряженности поля не может привести к увеличению термоэлектронного тока. Зависимость термоэлектронного тока от анодного напряжения приведена на рисунке 3.3.

Рис. 3.3. Зависимость термоэлектронного тока от анодного напряжения

Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода. Плотность тока насыщения определяется формулой Ричардсона - Дешмана, выведенной теоретически на основе квантовой статистики:

где А - работа выхода электронов из катода,

Т - термодинамическая температура,

С - постоянная, теоретически одинаковая для всех металлов (это не подтверждается экспериментом, что, по-видимому, объясняется поверхностными эффектами). Уменьшение работы выхода приводит к резкому увеличению плотности тока насыщения. Поэтому в радиолампах применяются оксидные катоды (например, никель, покрытый оксидом щелочноземельного металла), работа выхода которых равна 1 −1,5 эВ.

На явлении термоэлектронной эмиссии основана работа многих вакуумных электронных приборов.

Эле́ктрова́куумный трио́д , или просто трио́д , - электронная лампа, имеющая три электрода: термоэлектронный катод (прямого или косвенного накала), анод и одну управляющую сетку. Изобретён и запатентован в 1906 году американцем Ли де Форестом. Конструкция вакуумного триода показана на рис.3.4

Рис.3.4 Конструкция вакуумного триода

Триоды были первыми устройствами, которые использовались для усиления электрических сигналов в начале XX века. Схема электрическая принципиальная триода приведена на рис. 3.5

Рис. 3.5 Условное обозначение триода в схемах электрических принципиальных

Вольт-амперная характеристика триода приведена на рисунке 3.6

Рис. 3.6 Вольт-амперная характеристика триода

Вольт-амперная характеристика триода имеет высокую линейность. Благодаря этому вакуумные триоды вносят минимальные нелинейные искажения в усиливаемый сигнал.

В настоящее время вакуумные триоды вытеснены полупроводниковыми транзисторами. Исключение составляют области, где требуется преобразование сигналов с частотой порядка сотен МГц - ГГц большой мощности при небольшом числе активных компонентов, а габариты и масса не столь критичны, - например, в выходных каскадах радиопередатчиков, а также индукционный нагрев под поверхностную закалку. Мощные радиолампы имеют сравнимый с мощными транзисторами КПД; надёжность их также сравнима, но срок службы значительно меньше. Маломощные триоды имеют невысокий КПД, так как на накал тратится значительная часть потребляемой каскадом мощности, порой более половины от общего потребления лампы.

Тетрод-двухсеточная электронная лампа, предназначенная для усиления напряжения и мощности электрических сигналов. Схема электрическая принципиальная тетрода приведена на рис. 3.7

Рис. 3.7 Условное обозначение тетрода в схемах электрических принципиальных

В отличие от триода тетрод имеет между управляющей сеткой и анодом экранирующую сетку, которая ослабляет электростатическое воздействие анода на управляющую сетку. По сравнению с триодом тетрод имеет большой коэффициент усиления, очень малую емкость анод - управляющая сетка и большое внутреннее сопротивление.
По своему назначению подразделяются на тетроды для усиления напряжения и мощности низкой частоты и широкополосные тетроды, предназначенные для усиления видеосигналов. Лучевой тетрод, как и обыкновенный, является двухсеточной лампой, но отличается от последнего отсутствием динатронного эффекта, что достигается применением лучеобразующих пластин, расположенных между экранирующей сеткой и анодом и соединенных внутри баллона с катодом. Лучевые тетроды применяются в основном для усиления мощности низкой частоты в оконечных каскадах приемников, телевизоров и в другой аппаратуре.

Пенто́д (от др.-греч. πέντε пять, по числу электродов) - вакуумная электронная лампа с экранирующей сеткой, в которой между экранирующей сеткой и анодом размещена третья (защитная или антидинатронная) сетка. По конструкции и назначению пентоды делятся на четыре основные типа: маломощные усилители высоких частот, выходные пентоды для видеоусилителей, выходные пентоды усилителей низких частот, и мощные генераторные пентоды .

Экранированные лампы, - тетрод и пентод, - превосходят триод на высоких частотах. Верхняя рабочая частота пентодного усилителя может достигать 1 ГГц. Коэффициент полезного действия усилителя мощности на пентодах (около 35 %) существенно выше, чем у усилителя на триодах (15 %-25 %), но несколько ниже, чем у усилителя на лучевых тетродах.

Недостатки пентодов (и вообще всех экранированных ламп) - более высокие, чем у триода, нелинейные искажения, в которых преобладают нечетные гармоники, острая зависимость коэффициента усиления от сопротивления нагрузки, бо́льший уровень собственных шумов..

Более сложными являются многоэлектродные лампы с двумя управляющими сетками–гептоды, которые появились в связи с изобретением супергетеродинного приема.

Электровакуумные приборы (ЭВП)

приборы для генерации, усиления и преобразования электромагнитной энергии, в которых рабочее пространство освобождено от воздуха и защищено от окружающей атмосферы жёсткой газонепроницаемой оболочкой. К ЭВП относятся лампы накаливания (См. Лампа накаливания), вакуумные Электронные приборы (в которых поток электронов проходит в вакууме), газоразрядные электронные приборы (в которых поток электронов проходит в газе).

Лампы накаливания - наиболее массовый вид ЭВП (в 70-х гг. 20 в. ежегодный мировой выпуск составляет около 10 млрд. штук). Удаление воздуха из баллона лампы предотвращает окисление нити накала кислородом. Для уменьшения испарения накалённой нити лампы накаливания некоторых типов после удаления воздуха наполняют инертным газом. Это позволяет повысить рабочую температуру нити накала и тем самым - световую отдачу ламп без изменения срока их службы. Присутствие инертного газа не влияет на процесс преобразования подводимой к лампе электрической энергии в световую.

Вакуумные электронные приборы изготовляют с таким расчётом, чтобы в рабочем режиме давление остаточных газов внутри баллона составляло 10 -6 -10 -10 мм рт. ст. При такой степени разрежения ионы остаточных газов не влияют на траектории электронов и шумы, создаваемые потоком этих ионов при их движении к катоду, достаточно малы. Такие ЭВП охватывают следующие классы приборов. 1) Электронные лампы (См. Электронная лампа) - Триод ы, Тетрод ы, Пентод ы и т. д.; предназначены для преобразования энергии постоянного тока в энергию электрических колебаний с частотой до 3․10 9 гц. Основные области применения электронных ламп - радиотехника, радиосвязь, радиовещание, телевидение. 2) ЭВП СВЧ - Магнетрон ы и Магнетронного типа приборы , пролётные и отражательные Клистрон ы, лампы бегущей волны (См. Лампа бегущей волны) и лампы обратной волны (См. Лампа обратной волны) и т. д.; предназначены для преобразования энергии постоянного тока в энергию электромагнитных колебаний с частотами от 3․10 8 до 3․10 12 гц. ЭВП СВЧ используются главным образом в устройствах радиолокации, телевидения (для передачи телевизионных сигналов по линиям радиорелейной связи, спутниковым линиям), СВЧ радиосвязи, телеуправления (например, ИСЗ и космическими кораблями). 3) Электроннолучевые приборы - осциллографические электроннолучевые трубки (См. Осциллографическая электроннолучевая трубка), Кинескоп ы, запоминающие электроннолучевые трубки (См. Запоминающая электроннолучевая трубка) и т. д.; предназначены для различного рода преобразований информации, представленной в форме электрических или световых сигналов (например, визуализации электрических сигналов, преобразования двумерного оптического изображения в последовательность телевизионных сигналов и наоборот). 4) Фотоэлектронные приборы - передающие телевизионные трубки (См. Передающая телевизионная трубка), фотоэлектронные умножители (См. Фотоэлектронный умножитель), вакуумные Фотоэлемент ы; служат для преобразования оптического излучения в электрический ток и применяются в устройствах автоматики, телевидения, астрономии, ядерной физики, звукового кино, факсимильной связи и т. д. 5) Вакуумные индикаторы - электронносветовые индикаторы (См. Электронносветовой индикатор), цифровые индикаторные лампы (См. Цифровая индикаторная лампа) и др. Работа индикаторных ламп основана на преобразовании энергии постоянного тока в световую энергию. Применяются в измерительных приборах, устройствах отображения информации, радиоприёмниках и т. д. 6) Рентгеновские трубки (См. Рентгеновская трубка); преобразуют энергию постоянного тока в рентгеновские лучи. Применяются: в медицине - для диагностики ряда заболеваний; в промышленности - для обнаружения невидимых внутренних дефектов в различных изделиях; в физике и химии - для определения структуры и параметров кристаллических решёток твёрдых тел, химического состава вещества, структуры органических веществ; в биологии - для определения структуры сложных молекул.

Р. Ф. Коваленко.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Электровакуумные приборы" в других словарях:

    Приборы, в к рых перенос тока осуществляется электронами или ионами, движущимися между электродами через высокий вакуум или газ внутри газонепроницаемой оболочки. Э. п. разделяются на два больших класса: электронные приборы и ионные приборы. В… … Физическая энциклопедия

    - (ЭВП) служат для различного рода преобразований электромагнитной энергии (генерации, усиления и т. д.). К ЭВП относятся: вакуумные электронные приборы (электронные лампы, магнетроны, клистроны, электронно лучевые приборы, рентгеновские трубки и т … Большой Энциклопедический словарь

    - (ЭВП), электронные приборы, в которых рабочее пространство освобождено от воздуха и защищено от окружающей атмосферы газонепроницаемой (вакуумно плотной) оболочкой. Работа основана на взаимодействии потока электронов, испускаемых катодом, с… … Современная энциклопедия

    Приборы, принцип действия к рых обусловлен движением эл нов в высоком вакууме. К Э. п. относятся электронные лампы (выпрямительные, генераторные, усилительные, смесительные, индикаторные и др.), электронные приборы СВЧ (клистрон, магнетрон,… … Физическая энциклопедия

    ЭЛЕКТРОВАКУУМНЫЕ ПРИБОРЫ - электротехнические приборы, в которых электрический ток обусловлен электронным потоком, двигающимся в высоком вакууме (см. (1)). К Э. п. относятся: электронные лампы (выпрямительные, генераторные, усилительные, смесительные, индикаторные и др.),… … Большая политехническая энциклопедия

    - (ЭВП), служат для различного рода преобразований электромагнитной энергии (генерации, усиления и т. д.). К ЭВП относятся: вакуумные электронные приборы (электронные лампы, магнетроны, клистроны, электронно лучевые приборы, рентгеновские трубки… … Энциклопедический словарь

    - (ЭВП), электронные приборы, в которых рабочее пространство освобождено от воздуха и защищено от окружающей среды газонепроницаемой (вакуумно плотной) оболочкой. Служат для различного рода преобразований электромагнитной энергии (генерации,… … Энциклопедия техники

    - (ЭВП) электронные приборы, в к рых рабочее пространство освобождено от воздуха (давление остаточных газов обычно не выше 100 мкПа) и защищено от окружающей атмосферы газонепроницаемой (вакуумно плотной) оболочкой; работа осн. на взаимодействии… … Большой энциклопедический политехнический словарь

    - (ЭВП), служат для разл. рода преобразований эл. магн. энергии (генерации, усиления и т.д.). К ЭВП относятся: вакуумные электронные приборы (электронные лампы, магнетроны, клистроны, электронно лучевые приборы, рентгеновские трубки и т.д.),… … Естествознание. Энциклопедический словарь

    Электровакуумный прибор устройство, предназначенное для генерации, усиления и преобразования электромагнитной энергии, в котором рабочее пространство освобождено от воздуха и защищено от окружающей атмосферы непроницаемой оболочкой. К таким… … Википедия

Книги

  • Электроника. Учебник для бакалавров , Шишкин Г.Г. , Учебник охватывает все разделы современной электроники. Рассмотрены полупроводниковые и электровакуумные приборы сверхвысоких частот с динамическим управлением, газоразрядные приборы,… Категория:

Содержание статьи

ЭЛЕКТРОВАКУУМНЫЕ И ГАЗОРАЗРЯДНЫЕ ПРИБОРЫ, электронные лампы, используемые для генерации, усиления или стабилизации электрических сигналов. Электронная лампа представляет собой, по существу, герметичную ампулу, в вакууме или газовой среде которой движутся электроны. Ампулу обычно изготавливают из стекла или металла. Управление электронным потоком осуществляется посредством электродов, имеющихся внутри лампы.

Хотя в большинстве приложений на смену электронным лампам пришли полупроводниковые приборы, лампы все еще находят применение в видеотерминалах, радиолокаторах, спутниковой связи и во многих других электронных приборах.

В лампе имеется несколько проводящих элементов, называемых электродами. Эмиссию электронов в лампе осуществляет катод. Эта эмиссия вызывается либо нагревом катода, в результате которого электроны «закипают» и испаряются с его поверхности, либо воздействием света на катод. Движением эмиттированных электронов управляют электрические поля, создаваемые другими электродами внутри лампы. В большинстве случаев электроды лампы изолированы друг от друга и посредством проволочных выводов соединены с внешними схемами. Электроды, которые служат для управления движением электронов, называются сетками; электроды, на которые электроны собираются, называются анодами.

В электронной лампе относительно просто управлять величиной, продолжительностью, частотой и другими характеристиками электронного потока. Эти простота и легкость управления делают ее ценным прибором в многочисленных приложениях.

Термоэлектронная эмиссия.

Электроны самопроизвольно не выходят за пределы поверхностного слоя металла из-за действия сил притяжения, источником которых является сам металл. Потенциальную энергию электрона в любой точке металла вблизи его поверхности можно представить в виде графика (рис. 1), из которого видно, что для выхода за пределы поверхности металла электрон должен увеличить свою энергию T 0 , которой он обладает при абсолютном нуле температуры, дополнительно на величину W . При комнатной температуре очень малое число электронов обладает необходимой для выхода энергией, но с повышением температуры энергия электрона возрастает и приближается к уровню, необходимому для эмиссии. В электронных лампах необходимая тепловая энергия обеспечивается электрическим током, пропускаемым по проволочной нити накала (подогревателю), находящейся в лампе.

Диод.

После того как электроны покинули катод, их движение определяется силами электрических полей, воздействующих на них в вакууме. В простейшей электронной лампе – диоде – электроны притягиваются положительным потенциалом второго электрода – анода, где они собираются и проходят в цепь соответствующей схемы (рис. 2). Диод представляет, таким образом, прибор, пропускающий ток только в одном направлении – от анода к катоду, – и, следовательно, является выпрямителем. Простой иллюстрацией применения диода может служить схема, приведенная на рис. 3, где диод используется для зарядки конденсатора напряжением от источника переменного тока. Когда потенциал катода ниже анодного потенциала, через диод течет ток, так что, в конце концов, конденсатор заряжается до пикового напряжения источника переменного тока. Варианты схемы рис. 3 используются для детектирования сигнала звуковой частоты из радиочастотной волны и для получения мощности постоянного тока от источников переменного тока.

Триод.

Триод – это электронная лампа, в которой имеется третий (управляющий) электрод, установленный между катодом и анодом (рис. 4). Этот электрод обычно представляет собой сетку из тонких проволок, установленную очень близко к катоду, чтобы при небольшой разности потенциалов между сеткой и катодом в области между этими двумя электродами действовало сравнительно высокое электрическое поле. При этом потенциал сетки будет оказывать сильное воздействие на электроны.

Типичная схема усилителя, выполненного на триоде, приведена на рис. 5. К сетке подключена батарея отрицательного напряжения смещения, обозначенная E gg . Поскольку сетка имеет отрицательный потенциал по отношению к катоду, она не будет привлекать к себе электроны потока, движущегося от катода к аноду. На аноде поддерживается положительный потенциал относительно катода, что обеспечивается батареей E pp . Значения параметров E gg , E pp , сопротивлений резистора R g в цепи сетки и нагрузочного резистора R L выбирают так, чтобы через лампу шел некоторый ток. Потенциал анода, следовательно, получается несколько меньшим, чем потенциал E pp его источника питания, вследствие протекания тока через R L .

Если на сетку подать через конденсатор положительный сигнал, она будет воздействовать на электроны, выходящие из катода. Поскольку такая сетка представляет собой слабое физическое препятствие для электронов, они будут проходить сквозь сетку на анод. Поэтому при изменении потенциала сетки в положительную сторону ток через триод возрастает, а напряжение на аноде уменьшается. (Это уменьшение происходит из-за увеличения падения напряжения на R L , связанного с увеличением тока.) Если же входной сигнал, приходящий на сетку, меняет ее потенциал в отрицательном направлении, то происходит прямо противоположный процесс; напряжение на аноде возрастает. Во многих электронных лампах изменение сеточного напряжения по существу определяет изменение тока анода; отсюда следует, что изменения напряжения на аноде определяются выбором R L . В результате малое изменение напряжения сетки может при достаточно большом R L вызывать гораздо большее изменение напряжения на аноде.

Многоэлектродные лампы.

Логично задать вопрос: каким может быть эффект увеличения числа сеток в электронной лампе? Обычно вторая сетка, которая называется экранной и поддерживается под положительным потенциалом, находится между управляющей сеткой и анодом. Ее роль состоит в том, чтобы экранировать управляющую сетку от анода, уменьшая, таким образом, емкость между ними, которая в ряде случаев может привести к нежелательным эффектам обратной связи. Лампа с двумя сетками (четырьмя электродами) называется тетродом. В некоторых случаях между экранной сеткой и анодом добавляют еще одну сетку – антидинатронную, в результате получается пятиэлектродная лампа, или пентод. В тетроде электроны, достигающие поверхности анода, при ударе о нее выбивают вторичные электроны. Некоторые из них могут двигаться в обратном направлении и собираться экранной сеткой, обычно имеющей потенциал, близкий к потенциалу анода. Такой процесс вызывает потери в общем потоке электронов, проходящих через анод (в анодном токе). Антидинатронная сетка, находящаяся между экранной сеткой и анодом, поддерживается под отрицательным потенциалом по отношению к обоим соседним электродам, так что возвращающиеся электроны отталкиваются ею обратно к аноду. На рис. 6 показана типичная схема включения пентода.

В некоторых случаях ради экономии места и средств две отдельные структуры электронных ламп объединяют в едином герметичном корпусе.

Электронно-лучевые трубки.

В электронно-лучевой трубке (ЭЛТ) для воспроизведения изображения на люминесцентном экране используется пучок электронов, получаемых с нагретого катода. Этот пучок тщательно фокусируется в луч, создающий на экране маленькое пятно и возбуждающий электроны люминофора экрана, что и приводит к излучению света. Этот луч отклоняется под действием электрического или магнитного поля, описывая при этом траектории на экране, а интенсивность луча можно изменять посредством управляющего электрода, меняя тем самым яркость пятна. Часть ЭЛТ, в которой создается сфокусированный электронный луч, называется электронным прожектором. Хотя электронный прожектор – основная часть ЭЛТ, она из-за своей сложности будет рассмотрена после других.

Системы отклонения луча.

На выходе электронного прожектора получается узкий электронный луч, который на своем пути к экрану может отклоняться электрическим или магнитным полем. Электрические поля обычно используются в ЭЛТ с экраном малого размера, в частности, такого типа, как в осциллографах. Магнитные поля требуются для отклонения луча в телевизионных ЭЛТ с большими экранами.

В системах отклонения электрическим полем вектор поля ориентирован перпендикулярно начальной траектории луча (которую обычно обозначают направлением z ). Отклонение осуществляется приложением разности потенциалов к паре отклоняющих пластин, как показано на рис. 7. Обычно отклоняющие пластины делают отклонение в горизонтальном направлении (направление x ) пропорциональным времени. Это достигается приложением к отклоняющим пластинам напряжения, которое равномерно возрастает, пока луч перемещается поперек экрана. Затем это напряжение быстро падает до своего исходного уровня и снова начинает равномерно возрастать. Сигнал, который требует исследования (обычно периодическое колебание), подают на пластины, отклоняющие в вертикальном направлении (y ). В результате, если продолжительность однократной горизонтальной развертки равна периоду или соответствует частоте повторения сигнала y , на экране будет непрерывно воспроизводиться один период волнового процесса. В тех случаях, когда требуется большое отклонение, использование электрического поля для отклонения луча становится неэффективным.

Чтобы луч создавал на экране достаточно яркое пятно, а отклоняющий потенциал не достигал величины напряжения пробоя между отклоняющими пластинами, электроны должны получать большое ускорение. Более того, ЭЛТ не должна быть слишком длинной, чтобы прибор, в котором ее предполагается использовать, не стал неприемлемо громоздким. Наконец, ограничивается и длина отклоняющих пластин. При использовании магнитных полей для отклонения луча на большие углы ЭЛТ получается короткой (рис. 8).

Люминесцентный экран.

Люминесцентный экран формируется путем нанесения тонкого слоя люминофора на внутреннюю поверхность торцевой стенки конической части ЭЛТ. Кинетическая энергия электронов, бомбардирующих экран, превращается в видимый свет.

Электронный прожектор.

Электронный прожектор размещается в узкой горловине колбы ЭЛТ. Одна из многих возможных конструкций электронного прожектора схематически изображена на рис. 9,а . Катод и ряд близко расположенных друг к другу цилиндрических электродов выровнены вдоль их общей оси. На рис. 9,б с увеличением показана область фокусировки луча (т.е. «линза» электронного прожектора), в которой действует неоднородное, но осесимметричное электрическое поле. Векторы электрического поля везде перпендикулярны эквипотенциальным поверхностям и направлены на рисунке влево, так как второй анод находится под более высоким потенциалом, чем первый. При этом электроны формируются в сходящийся пучок, который благодаря надлежащей подстройке формы электродов и их относительных потенциалов точно фокусируется при достижении поверхности экрана. В некоторых случаях фокусировка осуществляется посредством магнитного поля, направленного параллельно оси ЭЛТ. На рис. 9,в поясняется принцип такой фокусировки.

Электрический потенциал, который определяет максимальную скорость электронов на выходе из электронного прожектора, лежит в пределах от нескольких сотен до 10 000 В. В эксплуатации последний ускоряющий электрод (второй анод) обычно заземляется. В электродах имеются диафрагмы с круглыми отверстиями, которые отсекают периферийные электроны от пучка, предотвращая тем самым размывание пятна. Кроме того, они улавливают электроны вторичной эмиссии, возвращающиеся от различных поверхностей внутренних компонентов ЭЛТ.

Фотоэлектронные приборы.

Фотоэлектронный электровакуумный прибор (фотоэлемент) – это электронная лампа, имеющая катод, который эмиттирует электроны, когда на него попадает видимый свет или инфракрасное либо ультрафиолетовое излучение. Изменения интенсивности излучения вызывают соответствующие изменения электронного потока в лампе, а следовательно, и тока во внешней цепи.

В научных исследованиях и технике фотоэлектронные приборы используют для измерений освещенности. Они находят применение также в устройствах управления уличным освещением, для уравнивания цветов в телевидении и согласования красок в полиграфии, для подсчета объектов на производстве. Фотоэлектронные приборы используются для считывания звука при демонстрации кинофильмов. Звук записывается на пленке в виде непрерывной дорожки переменной плотности, которая модулирует световой луч, направляемый на фотоэлектронный прибор. Выходной сигнал этого прибора получается пропорциональным плотности звуковой дорожки, записанной на пленке.

На рис. 10,а показаны вольт-амперные характеристики типичного электровакуумного фотоэлемента, а на рис. 10,б – относительные спектральные характеристики типичного фотоэлектронного прибора и глаза человека при постоянной световой интенсивности и изменяющейся длине волны излучения. Абсолютные значения амплитуд спектральных характеристик зависят от выбора материала чувствительной поверхности фотокатода.

В некоторых случаях внутрь прибора вводят газ, чтобы повысить его токовую чувствительность. Однако такая чувствительность становится сильно зависящей от потенциала анода, тогда как в вакуумном фотоэлементе выходной сигнал остается неизменным в широком диапазоне значений анодных потенциалов (рис. 11).

Фотоумножитель.

Действие фотоэлектронного умножителя основано на использовании вторичных электронов, которые освобождаются, когда электрон, обладающий высокой скоростью, ударяется о поверхность металла. Прибор работает следующим образом. Электроны, эмиттируемые обычным фотокатодом, притягиваются электрическим полем динода – электрода, потенциал которого несколько выше потенциала катода. Когда электрон ударяется о динод, из него вылетает несколько вторичных электронов. Они ускоряются в направлении второго динода, который находится под более высоким потенциалом, чем первый, и в результате соударения образуется еще большее число вторичных электронов. После нескольких таких ступеней каскадного «размножения» электронов процесс достигает, наконец, анода, собирающего электроны. Сильно увеличенное число электронов, собранных анодом, создает намного больший ток по сравнению с током фотокатода. Если каждый электрон, ударяющийся о динод, выбивает n вторичных электронов, то при числе динодов, равном k , коэффициент усиления тока будет nk . Положение динодов тщательно рассчитывается, с тем чтобы большинство электронов, вылетев с одного динода, попадало на другой и т.д. На рис. 12,а показано, как этот процесс реализуется в сравнительно ограниченном объеме электронной лампы. На рис. 12,б представлена схема подключения типичного фотоэлектронного умножителя. Резисторы всех динодов обычно имеют одинаковое сопротивление. На рис. 12,в приведена токовая характеристика фотоумножителя. В данном случае разность потенциалов между соседними динодами равна 100 В, а полученный коэффициент усиления тока составляет 10 6 .

Газоразрядные лампы.

Газоразрядная лампа – это электронная лампа, содержащая достаточно газа, чтобы существенным образом влиять на ее характеристики. Давление этого газа ниже атмосферного. Обычно для наполнения газоразрядных ламп используют инертные газы (неон, аргон и др.) или пары ртути. Характеристики лампы определяются как свойствами используемого газа, так и его давлением внутри лампы.

Соударения и ионизация.

Присутствие молекул газа в электронной лампе может быть причиной двух эффектов. Соударения с молекулами могут вызвать торможение потока электронов в лампе (такие соударения способны приводить к нарастанию пространственного заряда с образованием облака электронов вокруг катода, что вызывает уменьшение тока), а если электроны ускоряются достаточно большой разностью потенциалов, они могут выбивать электроны из молекул газа, оставляя после себя положительно заряженные ионы. Этот процесс называется ионизацией. Если ускоряющий потенциал в лампе еще более высокий, то первичный электрон и электрон, высвобожденный из молекулы в процессе ионизации, могут ускориться до такой большой скорости, что вызовут дальнейшую ионизацию. Такой процесс приводит к разряду – распространению ионизации в пространстве между анодом и катодом лампы. Образование большого числа положительных ионов и освободившихся при ионизации электронов увеличивает ток, текущий через лампу, и сопротивление лампы во время разряда становится очень малым.

Газоразрядные диоды и газонаполненные лампы.

Газоразрядный диод (газотрон) – это диод, в котором присутствие газа создает высокую проводимость в прямом направлении. Электроны, эмиттируемые катодом, ускоряются к аноду, и в результате возникает разряд. Разряд продолжается до тех пор, пока потенциал анода не станет ниже некоторого потенциала отсечки. Но как только анод становится отрицательным, нехватка электронов уже не в состоянии снова инициировать разряд. Если, однако, потенциал анода понижается до большой отрицательной величины (например, более -100 В), то разряд запускается электронами, эмиттируемыми анодом. Другими словами, анод легче эмиттирует электроны, когда его потенциал не нулевой, а отрицательный. Электроны могут высвобождаться в результате термоэмиссии даже при комнатной температуре из-за их теплового движения. Они могут также появляться вследствие фотоэлектрических процессов, вызываемых бомбардировкой фотонами. В любом случае эмиттируемые электроны будут вызывать в лампе ионизацию с последующим разрядом. Поэтому большие отрицательные напряжения на аноды газоразрядных диодов обычно не подают. Тем не менее такие диоды находят применение в низковольтных схемах выпрямления, в частности, в устройствах для зарядки батарей, где требуется большой ток в прямом направлении.

Неоновая лампа представляет собой газоразрядный диод с двумя одинаковыми электродами без подогревателей. На рис. 13 показана вольт-амперная характеристика такой лампы. Легко видеть, что падение напряжения на лампе остается почти без изменения после того, как лампа «зажглась» подачей на нее напряжения, немного превышающего стартовое. Такая характеристика газоразрядных ламп, работающих в области самоподдерживающегося тлеющего разряда, делает их полезными приборами для поддержания неизменного напряжения в схеме с меняющимся током нагрузки. Обычно для подобных стабилизаторов напряжения (стабилитронов) используют специально разработанные лампы, но годится и простая неоновая лампа. Подсоединять лампы к источнику напряжения нужно через последовательный резистор, чтобы предотвратить слишком большое возрастание тока, которое способно повредить лампу или источник напряжения.

Тиратрон.

Тиратрон – газоразрядный триод, обычно с подогревным катодом. Анод тиратрона, как правило, поддерживается под достаточно высоким потенциалом, чтобы инициировать разряд, когда сетка имеет потенциал катода. (На сетке же поддерживается отрицательный потенциал, чтобы не допустить выхода электронов из прикатодной области и возбуждения разряда.) В нужный момент по сигналу потенциал сетки повышается настолько, чтобы запустить разряд. После возникновения разряда сетка не управляет им до тех пор, пока анодное напряжение не понизится до уровня, при котором разряд погаснет.

Малый положительный импульс, поданный на сетку, позволяет инициировать прохождение большого тока через лампу. Эта управляющая функция и определяет полезность тиратрона. «Стартовый потенциал» сетки – напряжение, при котором инициируется разряд, – зависит от потенциала анода и температуры газа в лампе.

В ионных (газонаполненных) фотоэлементах газ используется, чтобы получить усиление тока вследствие ионизации молекул газа фотоэлектронами. Потенциал анода никогда не доводят до уровня, при котором разряд становится самоподдерживающимся и не нуждающимся в эмиссии фотоэлектронов с катода.

Электровакуумные приборы

Электровакуумные приборы – приборы для преобразования, усиления и генерации электромагнитной энергии, в которых рабочее пространство изолированно от воздуха и защищено от окружающей атмосферы жесткой газонепроницаемой оболочкой.

К электровакуумным приборам относятся газоразрядные электронные приборы, в которых поток электронов проходит в газе, вакуумные электронные приборы, в которых поток электронов проходит в вакууме, лампы накаливания.

Лампы накаливания – наиболее массовый вид электровакуумных приборов. Извлечение воздуха из баллона лампы позволяет предотвратить окисление нити накала кислородом. После удаления воздуха для уменьшения испарения раскаленной нити лампы накаливания некоторых типов заполняют инертным газом. Это дает возможность повысить рабочую температуру нити накала, чем повысить световую отдачу ламп без снижения срока их службы. Наличие инертного газа не влияет на преобразования подводимой к лампе электрической энергии в световую. Вакуумные электронные приборы изготавливают с таким расчетом, чтобы в рабочем режиме давление остаточных газов внутри баллона равнялось 10 -6 -10 -10 мм рт. ст.

Ионы остаточных газов при данной степени разрежения не влияют на траектории электронов и шумы, которые создаются потоком таких ионов при их приближении к катоду, сравнительно малы. Подобные электровакуумные приборы охватывают несколько классов приборов.

1. Электронные лампы – пентоды, тетроды, триоды и т. д.; необходимы для преобразования энергии постоянного тока в энергию электрических колебаний с частотой до 3 ? 10 9 Гц. Главные области использования электронных ламп – радиовещание, радиотехника, радиосвязь, телевидение.

2. Электровакуумные приборы СВЧ – магнетроны и приборы магнетронного типа, отражательные и пролетные клистроны, лампы обратной волны и лампы бегущей волны и т. д.; предназначены для преобразования энергии постоянного тока в энергию электромагнитных колебаний с частотами в пределах от 3 ? 10 8 до 3 ? 10 12 Гц. Электровакуумные приборы СВЧ применяются главным образом в приборах радиолокации, телевидения для передачи телевизионных сигналов по линиям радиорелейной связи, СВЧ-радиосвязи, спутниковым линиям.

3. Электронно-лучевые приборы – осциллографические электронно-лучевые трубки, запоминающие электронно-лучевые трубки, кинескопы и т. д.; предназначены для различных преобразований информации, представленной в форме световых или электрических сигналов (например, визуального отображения электрических сигналов, преобразования двумерного оптического изображения в последовательность телевизионных сигналов и наоборот).

4. Фотоэлектронные приборы – передающие телевизионные трубки, вакуумные фотоэлементы, фотоэлектронные умножители; служат для преобразования оптического излучения в электрический ток и используются в устройствах автоматики, ядерной физики, телевидения, астрономии, звукового кино, факсимильной связи и т. д.

5. Вакуумные индикаторы – цифровые индикаторные лампы, электронносветовые индикаторы и др. Работа индикаторных ламп базируется на преобразовании энергии постоянного тока в световую энергию. Используются в радиоприемниках, устройствах отображения информации, измерительных приборах и т. д.

6. Рентгеновские трубки; преобразуют энергию постоянного тока в рентгеновские лучи. Используются: в медицине – для диагностики ряда заболеваний; в промышленности – для нахождения невидимых внутренних дефектов в разных изделиях; в химии и физике – для определения структуры органических веществ, химического состава вещества, параметров и структуры кристаллических решеток твердых тел; в биологии – для определения структуры сложных молекул.

В газоразрядных электронных приборах давление газа, как правило, гораздо ниже атмосферного, поэтому их и относят к электровакуумным приборам. Класс газоразрядных электровакуумных приборов охватывает несколько видов приборов.

1. Ионные приборы большой мощности до нескольких мегаватт при токах до тысячи ампер, действие которых базируется на нейтрализации объемного заряда ионами газа. К подобным электровакуумным приборам относятся ртутные вентили, применяемые для преобразования переменного тока в постоянный в промышленности, на железнодорожном транспорте и в других отраслях; импульсные водородные таситроны и тиратроны, предназначенные для преобразования постоянного тока в импульсный в устройствах электроискровой обработки металлов, радиолокации и др.; клипперные приборы и искровые разрядники, используемые для защиты аппаратуры от перенапряжений.

2. Газоразрядные источники света непрерывного излучения, применяемые для освещения помещений, улиц, в киноаппаратуре, светящихся рекламах и т. д., и импульсные источники света, используемые в устройствах телемеханики и автоматики, передачи информации, оптической локации и т. д.

3. Индикаторы газоразрядные (матричные, знаковые, линейные, сигнальные), предназначенные для визуального воспроизведения информации в ЭВМ и других устройствах.

4. Квантовые газоразрядные приборы, которые преобразуют энергию постоянного тока в когерентное излучение – газовые лазеры, квантовые стандарты частоты.

Из книги Большая Советская Энциклопедия (--) автора БСЭ

Из книги Большая Советская Энциклопедия (ДО) автора БСЭ

Из книги Большая Советская Энциклопедия (ЗУ) автора БСЭ

Из книги Большая Советская Энциклопедия (МЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (НА) автора БСЭ

Из книги Большая Советская Энциклопедия (СИ) автора БСЭ

Из книги Большая Советская Энциклопедия (СВ) автора БСЭ

Из книги Большая Советская Энциклопедия (ТР) автора БСЭ

Из книги Большая Советская Энциклопедия (ЭЛ) автора БСЭ

Из книги Настоящая леди. Правила хорошего тона и стиля автора Вос Елена

Из книги Настоящий джентльмен. Правила современного этикета для мужчин автора Вос Елена

Приборы О правильности раскладки столовых приборов и расстановке бокалов позаботится официант. Тем, кто собирается в ресторан национальной кухни, по возможности стоит научиться брать и есть пищу национальными приборами, например, китайскую кухню – палочками, а

Из книги Справочник водолаза автора Автор неизвестен

5. Контрольно-измерительные приборы. Инструмент и приспособления водолазного снаряжения 5.1. Контрольно-измерительные приборы Контрольно-измерительные приборы предназначены для определения технических параметров водолазного снаряжения при проведении регламентных

Из книги Полная энциклопедия домашнего хозяйства автора Васнецова Елена Геннадьевна

Приборы Количество столовых приборов при сервировке стола зависит от меню завтрака, обеда и ужина.Справа от закусочных тарелок в определенном порядке раскладывают ножи: ближе к тарелке столовый нож, рядом с ним рыбный, последним кладут закусочный нож. Лезвия ножей

Из книги Этикет в ресторане автора Вос Елена

Из книги Большая энциклопедия техники автора Коллектив авторов

Электровакуумные приборы Электровакуумные приборы – приборы для преобразования, усиления и генерации электромагнитной энергии, в которых рабочее пространство изолированно от воздуха и защищено от окружающей атмосферы жесткой газонепроницаемой оболочкой.К

Из книги Базовая подготовка спецназа [Экстремальное выживание] автора Ардашев Алексей Николаевич